Superperfect Mycielski (Shame of Szymon)

Marcin Michalski, Robert Rałowski, Szymon Żeberski Wrocław University of Science and Technology

Winter School Hejnice, 2019

Mycielski theorem

Let A ⊆ [0,1] × [0,1] be comeager.
Then there exists a perfect set P such that

 $P \times P \subseteq A \cup \Delta$.

Assume that A ⊆ [0, 1] × [0, 1] has measure 1. Then there exists a perfect set P such that

$$P \times P \subseteq A \cup \Delta$$
.

Definition T a tree $T \subseteq \omega^{<\omega}$.

$$[T] = \{ x \in \omega^{\omega} : \forall n \ x \upharpoonright n \in T \}$$

- 1. *T* is perfect if $(\forall \sigma \in T)(\exists \tau \in T)(\sigma \subseteq \tau \land (\exists n \neq m)(\tau \frown n, \tau \frown m \in T))$
- 2. *T* is superperfect if $(\forall \sigma \in T)(\exists \tau \in T)(\sigma \subseteq \tau \land (\exists^{\infty} n)(\tau^{\frown} n \in T))$

Theorem 1 (Category case)

For every comeager set G of $\omega^{\omega} \times \omega^{\omega}$ there exists a superperfect set $M \subseteq \omega^{\omega}$ and a perfect set $P \subseteq M$ such that $P \times M \setminus \Delta \subseteq G$.

For every open dense set $U \subseteq X^2$ and two open sets $V_1, V_2 \subseteq X$ there are a basic open sets $B_1 \subseteq V_1$ and $B_2 \subseteq V_2$ such that $B_1 \times B_2 \subseteq U$ and $B_2 \times B_1 \subseteq U$.

For every open dense set $U \subseteq X^2$ and two open sets $V_1, V_2 \subseteq X$ there are a basic open sets $B_1 \subseteq V_1$ and $B_2 \subseteq V_2$ such that $B_1 \times B_2 \subseteq U$ and $B_2 \times B_1 \subseteq U$.

Lemma 2

For every open dense set $U \subseteq X^2$ and a finite sequence of open sets $(V_k : k < n)$ in X there is a sequence of basic open sets $(B_k : k < n)$ such that $B_k \subseteq V_k$ and for distinct $k, l \in \omega$ we have $B_k \times B_l \subseteq U$.

Proof of Theorem 1.

 $G = \bigcap_{n \in \omega} U_n$ where $(U_n)_{n \in \omega}$ Define recursively a sequence $(B_n : n \in \omega)$ of sets such that for each $n \in \omega$ the set $B_n = \{\tau_\sigma : \sigma \in n^{\leq n}\}$ consists of nodes satisfying:

1.
$$\tau_{\emptyset} = \emptyset$$
 and $\tau_{\sigma_1} \subseteq \tau_{\sigma_2}$ for $\sigma_1 \subseteq \sigma_2$;

- 2. $\tau_{\sigma \frown k} \cap \tau_{\sigma \frown j} = \tau_{\sigma}$ for $\sigma \in n^{\leq n}$ and distinct k, j < n;
- a sequence of clopen sets ([τ_σ] : σ ∈ nⁿ) satisfies the thesis of Lemma 2 for U_n.

$$T = \{\tau \in \omega^{<\omega} : (\exists \tau' \in \bigcup_{n \in \omega} B_n)(\tau \subseteq \tau')\}$$

$$T_2 = \{\tau \in \omega^{<\omega} : (\exists \sigma \in 2^n) (\tau \subseteq \tau_{\sigma})\}$$

Then

$$[T] \times [T_2] \subseteq G \setminus \Delta.$$

Definition

Let T be a tree on a set A. Then

- ▶ for each $t \in T$ succ $(t) = \{a \in A : t^{\frown}a \in T\};$
- $split(T) = \{t \in T : |succ(t)| \ge 2\};$
- ω -split(T) = { $t \in T : |succ(t)| = \aleph_0$ };
- ▶ for $s \in T$ Succ_T(s) = { $t \in split(T) : s \subseteq t, (\forall t' \in T)(s \subseteq t' \subseteq t \rightarrow t' \notin split(T))$ };
- ▶ for $s \in T$ ω -Succ_T $(s) = \{t \in \omega$ split $(T) : s \subseteq t, (\forall t' \in T)(s \subseteq t' \subseteq t \to t' \notin \omega$ -split $(T))\};$

▶ $stem(T) \in T$ is a node τ such that for each $s \subsetneq \tau$ |succ(s)| = 1 and $|succ(\tau)| > 1$.

Definition

A tree T on ω is called

- Sacks tree or perfect tree, if for each node s ∈ T there is t ∈ T such that s ⊆ t and |succ(t)| ≥ 2;
- Miller tree or superperfect tree, if for each node s ∈ T exists t ∈ T such that s ⊆ t and |succ(t)| = ℵ₀;
- Laver tree, if for each node t ⊇ stem(T) we have |succ(t)| = ℵ₀;
- Hechler tree, if for each node t ⊇ stem(T) we have that a set {n ∈ ω : t ∩ n ∉ T} is finite;

There exists a dense G_{δ} set $G \subseteq \omega^{\omega}$ which contains no body of any Laver tree.

Proof.

$$G = \{x \in \omega^{\omega} : \exists^{\infty} n \ x(n) = 0\}$$

Corollary

Mycielski Theorem for the category does not hold in the case of Laver trees.

Proof.

Let us take G as in the Lemma 3. Set $G' = G \times \omega^{\omega}$.

We will work in $[0,1]^2$ and we will recognize superperfect sets as homeomorphic images of bodies of Miller trees from ω^{ω} in $[0,1] \setminus \mathbb{Q}$.

Theorem 2 (Measure case)

For every measure 1 set F of $\omega^{\omega} \times \omega^{\omega}$ there exists a superperfect set $M \subseteq \omega^{\omega}$ and a perfect set $P \subseteq M$ such that $P \times M \setminus \Delta \subseteq F$.

For every F_{σ} set F there is an F_{σ} set $\widetilde{F} \subseteq F$ of the same measure such that $\widetilde{F}^* \subseteq F$.

 F^* denotes points of density 1

Proof.

Let $F = \bigcup_{n \in \omega} F_n$, where $(F_n)_{n \in \omega}$ is an ascending sequence of closed sets. $\lambda(F^* \setminus F) = 0$, thus for every $n \in \omega$ let U_n be an open set of measure $< \frac{1}{n+1}$ such that $F^* \setminus F \subseteq U_n$. For every $n \in \omega$ let us set

$$\widetilde{F}_n = F_n \setminus U_n$$

and

$$\widetilde{F} = \bigcup_{n \in \omega} \widetilde{F}_n.$$

Lemma 5 Let $\varepsilon > 0$, $F \subseteq [0,1]^2$ be an F_{σ} set of full measure and $(U_k : k < n)$ a finite sequence of open subsets of [0,1]. Then there exists a sequence of open intervals with rational endpoints $(I_k : k < n)$ such that for distinct i, j < n we have $\lambda(I_k \times I_j \cap F) > 1 - \varepsilon$.

Fact

Mycielski Theorem for the measure does not hold in the case of Laver trees.

Proof.

For every $n \in \omega$ let H_n be a Hechler tree such that for every $\sigma \in \omega^{\leq n}$ we have $split_{H_n}(\sigma) = \omega$ and for $\sigma \in \omega^{>n}$ it is true that $split_{H_n}(\sigma) \neq \omega$ (but still cofinite). Let us set then $G = \bigcup_{n \in \omega} [H_n]^c$.

Thank you for your attention!

<□ > < @ > < E > < E > E のQ @